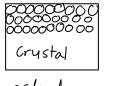

Notes 01/28

Monday, January 28, 2008 10:01 AM


Notes 0128

Audio recording started: 10:01 AM Monday, January 28, 2008

Cystalline Solids

- Are very high symmetry
- o Atoms are uniform throughout and will look the same in different places
- Ordered crystal:

Types of Cystalline Solids

1. Extended covalent solid (network solid) - atoms or molecules linked together by covalent bonds throughout the crystal

Example: diamond C (C connected by strong C-C bonds)

Example: graphite C (C connected by strong C=C bonds)

Example: BN (B connected to N by strong B-N bonds)

■ Example:Si

■ Example: C₆₀ (fullerene)

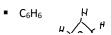
■ Example: SiO₂ (quartz)

$$\begin{array}{ccc}
O_2(\text{quartz}) & O_2(\text{quartz}) \\
O_1 & O_2(\text{quartz}) \\
O_2 & O_3(\text{quartz}) \\
O_3 & O_4(\text{quartz}) \\
O_4 & O_5(\text{quartz}) \\
O_6 & O_6(\text{quartz}) \\
O$$

■ Example:TiF₃

2. Metallic Solid Metals or Combination of Metal (Alloys)

■ Example: Ti, Fe Example: FeCo


3. Molecular Solid

Example: C₆₀ (discrete entity)

■ Example: H₂O - molecular solid

Example: HF

■ CO₂

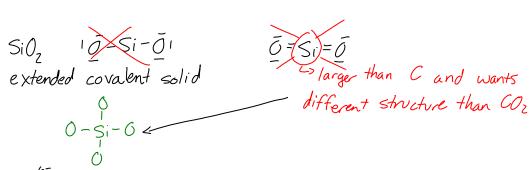
- B₆O
- What category does each fall into:
 - o FeCl₃ not metallic solid because no metal, not covalent because 3 bonds is very low coordination number for a metal which is not preferred. It is molecular solid.

XeCl₂-molecular solid

- 4. lonic solids 1st column or 2nd column with nonmetals (main group elements)
 - Example: LiCl, NaBr, Ca₃N₂
- What formula is reasonable?

$$Ca^{2+}$$
 $O^{-2} \rightarrow CaO$ ionic solid

2. Fe^{III} NO₃


3. **B** Cl

(By Cly) B B-CI molecular solid

molecular solid

OFz :OF bent molecular solid

Covalent Bonding

$$H-H$$
 H_z

- 1. Determine the nature of the atomic orbitals (valence orbitals)
 - ☐ H: 1s¹ (s)
 - □ O:[He]2s²2p⁴

